$$B_{d,s} \to \ell^+\ell^-$$
 in the

two-Higgs-doublet model

Heather Logan and Ulrich Nierste Fermilab

B Physics at the Tevatron, WG2 February 24, 2000

Why new Higgs physics?

We have no direct measurements of EWSB mechanism.

An enlarged Higgs sector is often a feature of models of New Physics.

→ Interesting to search for new Higgs physics.

Higgs bosons couple to fermions proportional to fermion mass:

- 3rd generation couplings are largest.
- -B sector can potentially yield signals.

New Physics from rare B decays

Look at processes that are suppressed (or nonexistant) in the SM.

- → Better chance for New Physics to compete with the SM process at a detectable level.
- In general: NP which enters at the loop level can compete with SM if SM process happens only at one—loop.
- New Higgs physics: Helicity suppression → factors of lepton mass in SM amplitude.
 Lepton Yukawa couplings could be relevant.

Leptonic B decays in the SM:

- $-b \rightarrow (d,s)$ flavor-changing loop
- helicity suppressed
- \rightarrow Chance to look for new Higgs physics.

<u>Outline</u>

- ullet $B o \ell^+\ell^-$ in the Standard Model
- ullet $B
 ightarrow \ell^+\ell^-$ in the Two-Higgs-Doublet Model
- Conclusions

Helicity suppression in the SM

 $B_{d,s}$ is spin-zero so it must decay to a spin-zero state: $\bar{\ell}_L \ell_R$ or $\bar{\ell}_R \ell_L$.

However, main SM contributions have wrong helicity structure; must flip the spin of one of the outgoing leptons.

For comparison, there is no helicity suppression in $B \to X_s \ell^+ \ell^-$, so extended Higgs contributions are negligible compared to SM.

Effective Lagrangian contributing to $B \to \ell \bar{\ell}$:

$$\mathcal{L} = \underline{H}(\bar{s}\gamma_{\mu}Lb)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) + \underline{P}(\bar{s}Rb)(\bar{\ell}\gamma_{5}\ell) + \underline{S}(\bar{s}Rb)(\bar{\ell}\ell)$$

Hadronic matrix elements:

$$\langle 0|\bar{s}\gamma^{\mu}\gamma_{5}b(x)|\bar{B}\rangle = if_{B}P_{B}^{\mu}e^{-iP_{B}\cdot x}$$
$$\langle 0|\bar{s}\gamma_{5}b(x)|\bar{B}\rangle = -if_{B}m_{B}e^{-iP_{B}\cdot x}.$$

Helicity suppression: $P_B^{\mu} = (p_{\ell} + p_{\bar{\ell}})^{\mu}$, use Dirac equation:

$$P_B^{\mu}(\bar{\ell}\gamma_{\mu}\gamma_5\ell) = -2m_{\ell}(\bar{\ell}\gamma_5\ell)$$

Operator coefficients contribute to the decay width as follows:

$$\Gamma = \frac{m_B^3 f_B^2 \kappa}{32\pi} \left(\left| -2 \frac{m_\ell}{m_B} H + P \right|^2 + \kappa^2 |S|^2 \right)$$

 $\kappa = \sqrt{1 - 4m_\ell^2/m_B^2}$ is a kinematic factor.

SM diagrams and formulae

Box, Z-penguin:

$$H_{\text{SM}} = \frac{g^4}{8(16\pi^2)M_W^2} V_{ts}^* V_{tb}$$

$$\times \frac{x_t}{(x_t - 1)^2} \left[-\frac{1}{2}(x_t - 1)(x_t - 4) - \frac{3}{2}x_t \log x_t \right]$$

$$(x_t = \bar{m}_t^2/M_W^2 \simeq 4.3)$$

[Inami & Lim 1981, Grządkowski & Krawczyk 1983, Krawczyk 1989, Skiba & Kalinowski 1993]

G^0, h^0 penguins:

$$P_{SM} = \frac{g^4}{8(16\pi^2)M_W^2} V_{ts}^* V_{tb} \frac{m_b m_\ell}{M_Z^2}$$

$$\times \frac{x_t}{(x_t - 1)^2} \left(6 - 7x_t + x_t^2 + 2\log(x_t) + 3x_t \log(x_t) \right)$$

$$\Rightarrow S_{SM} = -\frac{g^4}{8(16\pi^2)M_W^2} V_{ts}^* V_{tb} \frac{m_b m_\ell}{M_{h^0}^2}$$

$$\times x_t \left(\frac{3}{2} + \frac{M_{h^0}^2}{M_W^2} \frac{3 - 4x_t + x_t^2 + 4x_t \log(x_t) - 2x_t^2 \log(x_t)}{4(x_t - 1)^3} \right)$$

The contributions of P_{SM} and S_{SM} to Γ are suppressed by a factor of m_b^2/M_W^2 compared to the contribution of H_{SM} .

 \rightarrow Neglect P_{SM} and S_{SM} .

In the 2HDM, we will find contributions to P and S that go like $m_b^2 \tan^2 \beta / M_W^2$ and are no longer negligible for large $\tan \beta$.

For $\tan \beta = 50$, $m_b \tan \beta \simeq 200$ GeV.

SM BRs and current limits

Current experimental limits on the branching ratios of $B_{d,s} \to \ell \overline{\ell}$:

B_d		The second secon	
Mode	Expt. Limit	SM Pred.	x above
$e\bar{e}$	$< 5.9 \times 10^{-6} \text{ [CLEO]}$	2.6×10^{-15}	2×10^{9}
$\muar{\mu}$	$< 6.8 \times 10^{-7} \text{ [CDF]}$	1.1×10^{-10}	6000
$ auar{ au}$	no upper limit	3.1×10^{-8}	

B_s			
Mode	Expt. Limit	SM Pred.	x above
$e\bar{e}$	$< 5.4 \times 10^{-5}$ [L3]	7.1×10^{-14}	8×10^{8}
$\muar{\mu}$	$< 2.0 \times 10^{-6} \text{ [CDF]}$	3.0×10^{-9}	700
$ auar{ au}$	no upper limit	6.5×10^{-7}	_

Tevatron has the potential to do best (closest to SM prediction) on $B_s \to \mu \bar{\mu}$.

BaBar expected 90% CL reach with 30 fb $^{-1}$ [from BaBar Physics Book]:

B_d only			
Mode	Expt. Reach	SM Pred.	x above
$e\bar{e}$	$< 5.0 \times 10^{-7}$	2.6×10^{-15}	2×10^{8}
$\mid \mu ar{\mu} \mid$	$< 5.0 \times 10^{-7}$	1.1×10^{-10}	5000
$ auar{ au}$	$< 2.0 \times 10^{-3}$	3.1×10^{-8}	60,000

Running on the $\Upsilon(4s)$, BaBar can only produce B_d .

Input parameters for numerical calculations

The B_d BRs are taken from the BaBar Physics Book.

The parameters used in the calculations of the B_s BRs are given below.

Parameter	Expt. value	value used	source
M_{B_s}	5.37 GeV	5.37 GeV	PDG 1998
$M_{B_s} \ \vdash^{total}_{B_s}$	$4.27 \pm 0.18 \times 10^{-13} \text{ GeV}$	$4.27 \times 10^{-13} \text{ GeV}$	PDG 1998
$f_{B_s}^{\overline{MS}}$ $m_b^{\overline{MS}}(m_b^{\overline{MS}})$	$0.245 \pm 0.030 \text{ GeV}$	0.245 GeV	Lattice '99
$m_b^{MS}(m_b^{MS})$	$4.25 \pm 0.08 \; \text{GeV}$	4.25 GeV	Beneke, Signer, Hoang
$ V_{ts} $	0.040 ± 0.002	0.040	PDG 2000
$m_t^{\overline{MS}}(m_t^{\overline{MS}})$	167 \pm 5 GeV	167 GeV	

B_s versus B_d

$$B_s$$
: $\mathcal{M} \sim V_{tb}V_{ts}^*$

$$B_d$$
: $\mathcal{M} \sim V_{tb}V_{td}^*$

$$BR \propto |V_{t(d,s)}|^2$$
.

Tevatron: $3 \times$ fewer B_s than B_d .

But: ratio of BRs $\sim \left(\frac{V_{td}}{V_{ts}}\right)^2 < (0.24)^2 \simeq 0.06$ [PDG 1999].

Therefore Tevatron has greater NP reach with B_s .

$B o \ell \overline{\ell}$ in 2HDM

We consider the non-supersymmetric Type II 2HDM.

Model contains two Higgs doublets,

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix} \to \text{couples to } d, \ell$$
 and
$$\Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} \to \text{couples to } u.$$

$$\mathsf{EWSB} \to \frac{G^\pm, G^0}{H^\pm, A^0, h^0, H^0} \qquad \qquad \tan\beta = \frac{v_2}{v_1}$$

Down-type quark and charged lepton Yukawa couplings $\sim g \frac{m}{M_W} \tan \beta$

SM: Contribution to Γ is proportional to $g^4\left(\frac{m_\ell}{m_B}\right)$.

2HDM: Some of the diagrams (box, penguins) give contributions that are proportional to

$$g^4 \left(\frac{m_b m_\ell \tan^2 \beta}{M_W^2} \right) \simeq g^4 \left(\frac{m_\ell}{m_B} \right) \left(\frac{m_b \tan \beta}{M_W} \right)^2.$$

The $\tan \beta$ enhancement makes these 2HDM contributions comparable to the SM contribution.

For example, for $\tan \beta = 50$, $m_b \tan \beta \sim 200$ GeV.

2HDM diagrams

$$\frac{b}{h, H^{\circ}} \rightarrow S$$

$$= H^{+} \wedge W^{+} + H^{+} \wedge G^{+}$$

 A^0,h^0,H^0 penguins: Dependence on M_{A^0,h^0,H^0} cancels.

e.g.:
$$G^+H^-A^0$$
 vertex $= -\frac{g}{2M_W}(M_{H^+}^2 - M_{A^0}^2)$. $1/M_{A^0}^2$ from A^0 propagator.

Gauge dependence cancels between box and penguins \rightarrow Gauge dependent pieces of penguins must be independent of M_{A^0,h^0,H^0} .

To $\mathcal{O}(\tan^2 \beta)$, BR depends only on M_{H^+} and $\tan \beta$.

2HDM contributions

Total 2HDM contribution to $B_s \to \ell \bar{\ell}$ proportional to $\tan^2 \beta$:

$$P_{ ext{2HDM}} = -S_{ ext{2HDM}} = rac{g^4}{8(16\pi^2)M_W^2}V_{ts}^*V_{tb} \ imes rac{m_b m_\ell an^2 eta}{M_W^2} rac{1}{\left(rac{M_{H^+}^2}{m_t^2} - 1
ight)} \log\left(rac{M_{H^+}^2}{m_t^2}
ight).$$

 $Sign(P_{2HDM}) = sign(-H_{SM})$ so there is constructive interference.

$$\Gamma = \frac{m_B^3 f_B^2}{32\pi} \kappa \left(\left| -2 \frac{m_\ell}{m_B} H_{\text{SM}} + P_{\text{2HDM}} \right|^2 + \kappa^2 |S_{\text{2HDM}}|^2 \right)$$

Probing the large $\tan \beta$ 2HDM

 ${\cal B}(B_s \to \mu \bar{\mu})$ in the 2HDM as a function of $M_{H^+}.$

 $(M_{H^+}>$ 165 GeV in Type II non-SUSY 2HDM from CLEO $b\to s\gamma.)$

SM: 3×10^{-9}

Regions of M_{H^+} , tan β parameter space probed by measurements of $\mathcal{B}(B_s \to \mu \bar{\mu})$.

Compare DZero exclusion from direct $t \to H^+ b$ search: Can only probe $M_{H^+} < m_t - m_b \simeq 170$ GeV.

Conclusions

Tevatron Run II measurement of $\mathcal{B}(B_s \to \mu \bar{\mu})$ will be the best in the world.

With sufficient luminosity, we can begin to probe the large $\tan\beta$ 2HDM.

How well can we do?